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QSAR models for a diverse set of compounds for cytochrome P450 1A2 inhibition have been
produced using 4 statistical approaches; partial least squares (PLS), multiple linear regression
(MLR), classification and regression trees (CART), and bayesian neural networks (BNN). The
models complement one another and have identified the following descriptors as important
features for CYP1A2 inhibition; lipophilicity, aromaticity, charge, and the HOMO/LUMO
energies. Furthermore all models are global and have been used to predict a diverse independent
set of compounds. For the first time in the field of QSAR, the « index of agreement has
comprehensively been used to assess the overall accuracy of the model’s predictive power. The
models are statistically significant and can be used as a rapid computational filter for
cytochrome P450 1A2 inhibition potential of compound libraries.

1. Introduction

Cytochromes P450 are a superfamily of isoenzymes
that catalyze the metabolism of a large number of
compounds of both exogenous and endogenous origin.
CYP1A2, which is a member of the CYP1A family of
cytochrome P450s, accounts for about 12% of the total
CYP content of human liver microsomes and is the
major enzyme involved in the metabolism of theo-
phylline, caffeine, imipramine, acetaminophen, and
propranolol as well as the metabolism of endogenous
substances such as 17f-estradiol and uroporphyrinogen
II1.12

Drug—drug interactions have become an important
issue in health care. Many of the major pharmacokinetic
interactions between drugs are due to hepatic cyto-
chrome P450 enzymes being inhibited by concomitant
administration of other drugs. The selective serotonin
reuptake inhibitor fluvoxamine is a very potent inhib-
itor of CYP1A2. Pharmacokinetic studies have shown
fluvoxamine to increase the plasma levels of caffeine
when coadministered, intimating that intake of caffeine
during fluvoxamine treatment may lead to caffeine
intoxication.?

CYP1A2 is of particular importance in carcinogenesis
owing to its activation of heterocyclic amines that are
present in cooked meat and fish. These amines are
metabolically activated by cytochrome P450 1A2 by
conversion of the amino radical into a hydroxyamino
group.* The resulting hydroxyamino derivatives are
further activated by forming esters that ultimately
produce DNA adducts.5 Thus, elevated levels of CYP1A2
could enhance individual susceptibility to carcinogen-
esis, and modulation of this enzyme activity by CYP1A2
inhibitors could have important implications for cancer
prevention. Flavonoids are a class of phytochemicals
that are abundant in edible plants and tend to show

* To whom correspondence should be addressed. Phone: +44 (0)-
1509 64 4882. Fax: +44 (0)1509 64 5576. E-mail: Kamaldeep.Chohan@
astrazeneca.com and Stuart.Paine@astrazeneca.com.
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CYP1A2 inhibition potential.® In fact, studies in vitro
and in vivo have shown that some flavonoids modulate
the metabolism of and disposition of xenobiotics and can
contribute to cancer prevention.”’?

The vast majority of quantitative structure activity
relationship (QSAR) studies relating to cytochrome P450
1A2 inhibitors have been based upon flavonoids and
their derivatives.l® The object of this study was to
investigate the effects of an array of diverse drugs on
the activity of human CYP1A2 and to elucidate struc-
tural features related to inhibitory potency. No such
dataset was available to us, so we instigated an experi-
mental campaign to generate a dataset suitable for such
an investigation. Of primary importance was a large
dynamic range of continuous measurements (pICs¢s), a
diverse set of compounds to cover the drug-like space,
and the properties thought to govern 1A2 inhibition.

Four statistical methods have been used in our
analysis: partial least squares (PLS),11713 multiple
linear regression (MLR), classification and regression
trees (CART),*15 and bayesian neural networks (BNN).16
Although these techniques employ different basic as-
sumptions in their modeling, we would nevertheless
expect to obtain complementary results in prediction.
One of the advantages of regression trees and BNN is
that they are able to model nonlinearity in any dataset.
On the other hand MLR and PLS techniques are less
abstract than regression trees and BNN, making inter-
pretation more straightforward. Furthermore, making
use of a number of techniques provides the opportunity
of consensus modeling, which may have advantages over
any individual model in prediction. In the fields of
virtual screening, consensus modeling has been shown
to produce more stable predictions than any individual
model.1”-1® In the absence of measured data, model
predictions can be extremely useful and provide a means
of identifying molecules that may be problematic. QSAR
models are more than a literature curiosity, and suc-
cessful ones offer the potential to be used as a virtual
screen to filter design targets before synthesis. However,
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Table 1. Training Set Statistics for Each Model

model model r2 rmse
PLS 0.72 1.0
MLR 0.71 1.0
CART 0.84 0.7
BNN 0.72 1.0

as has recently been shown by Stouch,!® apparently
reasonable models can fail to give useful predictions
when tested on compounds structurally different from
the training set. We therefore wished to investigate the
performance of these models in true prediction, and also
to evaluate the dependence of predictivity on the
distance of the predicted compound to the model space.?°

2. Results and Discussion

Based on the rmse of the training set, all models
except for CART have the same rmse (error = 1 log unit;
Table 1). The CART model has the lowest rmse = 0.7
log unit.

2.1. Partial Least Squares Analysis. A significant
PLS model based on pICs data has been produced. The
2 component PLS model incorporates 17 x-descriptors
and has an 72 = 0.72 and a ¢2 = 0.67 (n = 109, leave-
1-out). This is a good model and shows high predictivity
in an internal cross-validation study. The most impor-
tant variables describing CYP1A2 inhibition were lipo-
philicity and aromaticity (number of aromatic carbons).
The model predicts that decreasing lipophilicity and
aromaticity should decrease CYP1A2 inhibition. Fur-
thermore, increasing charge, dipole moment, M3M (i.e.
moment of inertia along the third principal axis of a
molecule), and the difference between the HOMO and
LUMO energy decreases CYP1A2 inhibition.

2.2. Multiple Linear Regression Analysis. A five-
term MLR model has been produced. The model fit
details are similar to the PLS case. The MLR model has
an r? = 0.71 (r? adjusted = 0.70). Each of the terms is
statistically significant. The effect of each variable is
summarized in eq 1:

pIC,, = 4.457 + (0.357 x ACDLogD7.4) —
(0.952 x DE) — (0.0989 x dipole moment) +
(0.113 x aromaticity) — (0.0808 x M3M) (1)

Consistent with the PLS model, lipophilicity (i.e.
ACDLogD7.4) and aromaticity are positively correlated
with CYP1A2 inhibition and dipole moment, M3M, and
DE (i.e. the difference between the HOMO and LUMO
energy) are negatively correlated with CYP1A2 inhibi-
tion.

2.3. Classification and Regression Trees Analy-
sis. Regression analysis carried out within CART
produces a significant model based upon the pICs, data
and has r2 = 0.84 and rmse = 0.70. Directly under-
standing the properties that have the largest influence
upon the inhibition of CYP1A2 from this CART regres-
sion model can be rather challenging. The way these
authors have approached the problem is to investigate
each of the individual 15 trees, which make up the final
regression analysis. It is then possible to look at a
frequency distribution of the most important properties
in each of these trees and from this conclude which
descriptors are having the most influence on the model
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overall. Figure 1a shows a frequency distribution plot
of the most significant descriptors in each of the 15 trees
used to build the regression model. As can be seen,
aromaticity is the most significant variable in five out
of the 15 trees. MMSPECV1, which is a measure of
positive electrostatic potential on the van de Waals
surface area, is the next most frequent variable, occur-
ring in 3 of the 15 trees as the most important variable.
ACDLogD7.4 and the HOMO energy both occur twice
as the most important variable. Figure 1a suggests that
the CART regression model shows concordance with the
PLS, MLR, and BNN models, as all models are identify-
ing aromaticity and lipophilicity as playing major roles
in the inhibition of CYP1A2. Increasing aromaticity and
or increasing lipophilicity will increase the inhibition
of CYP1A2.

Figure 1b shows the frequency distribution for all
descriptors that fall within the top five most important
descriptors for each of the 15 trees, which make up the
regression model. In this distribution the most frequent
is MMSPECVD, which is a measure of the negative
electrostatic potential on the van de Waals surface area.
This would indicate that, while this descriptor is not
frequently the single most important descriptor, it does
contribute significantly to all the trees used to build the
regression model. Aromaticity and ACDLogD7.4 are
again highly significant descriptors in all the trees used
in the CART regression analysis.

2.4. Bayesian Neural Networks Analysis. The
statistics of the BNN model are similar to the PLS and
MLR models: 72 = 0.72 and an rmse = 1.0. The BNN
model incorporates six descriptors; most of these are
similar to the descriptors in the PLS, MLR, and CART
models (i.e. aromaticity, lipophilicity, M3M, and the
HOMO/LUMO energies). The BNN model has a further
two descriptors for solvent accessible surface area and
the number of acidic groups likely to be ionized at pH
=T74.

Generally, all four models suggest that lipophilicity,
aromaticity, charge, and HOMO/LUMO energies are
important features describing CYP1A2 inhibition. In-
terestingly, these descriptors are also found to be
important in describing CYP1A2 substrates.?!

2.5. Consensus Model. The different statistical
approaches for modeling CYP1A2 inhibition allow the
use of consensus modeling. In this paper, the consensus
prediction of a compound is simply the average predic-
tion from all models. A consensus model may be better
than any individual model simply because an extreme
prediction by one model may be a subtle outlier or a
reasonably predicted compound by the other models.
Figure 2 shows the observed versus predicted values
using the consensus model for both the training set (blue
diamonds) and the independent test set (pink squares).
Compounds that had their pICs¢ pinned at 2.30 because
of no apparent inhibition were included in the training
set. The variance of the prediction for these pinned
compounds is similar to the variance for predictions over
the full dynamic range of measured pICsps. Further-
more, removal of these points from the training set does
not significantly affect the outcome of the models.
Therefore, inclusion of these points in the training set
is reasonable and ensures that the training set covers
the oral drugs’ property space. The consensus model
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Figure 1. (a) Frequency distribution profile for descriptors that occur as the most important descriptor in each of the 15 trees
used to make the regression model. (b) Frequency distribution profile for all descriptors that occur within the top five descriptors

of each of the 15 trees used to make the regression model.
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Figure 2. Measured CYP1A2 inhibition (pICso) versus the consensus model prediction.

Table 2. Statistics for the Oral Drug Test Set (68
Compounds)*

2 2

model r mean error 2t rmse
PLS -2.18 -0.58 0.16 (<0.001) 1.3
MLR —2.59 —-0.41 0.17 (<0.001) 14
CART —-0.92 —0.20 0.20 (<0.001) 1.0
BNN —2.29 -0.43 0.14 (0.002) 1.3
consensus —1.58 -0.41 0.19 (<0.001) 1.2

@ F significance is in parentheses.

(rmse = 0.84) is a better model than the PLS (rmse =
1.0), MLR (rmse = 1.0), and BNN (rmse = 1.0) models
but is weaker than the CART (rmse = 0.70) model.
However, to assess the model predictivity it is best to
evaluate the rmse of an independent test set.

2.6. Analysis of Model Predictions. If we consider
the rmse in the test set for the 68 compounds that do
have continuous measurements, then the CART model
(rmse = 1.0) is better than the consensus model (rmse
= 1.2), which is better than all other models (PLS and
BNN rmse = 1.3 and MLR rmse = 1.4; Table 2 and
Figure 2). However, the rmse of these models is worse
than the standard deviation of the measured pICsos in
the test set. Furthermore, the rmse values of the models
are no better than the rmse obtained if the mean pICsg
value of the training set is used to predict the 68

compounds in the test set. This is reflected by the
negative r2 around the line of unity, however the r%y
(around the line of best fit) is both positive and statisti-
cally significant (Table 2). This suggests that there is a
bias in our predictions, and this is also reflected in the
mean error, implying that our models are underpre-
dicting for this specific test set. Nevertheless, the models
can rank compounds based on CYP1A2 inhibition, as
there is a statistically significant relationship between
measured and predicted. On the other hand, models
could have been built and validated by partitioning the
training set of 109 compounds into 87 training and 22
test set compounds (i.e. 80:20 split). However, while a
model may be built on a dataset produced in a single
screen from a single laboratory, or from a literature
dataset, its success is often judged by its success in
prediction as measured in a similar screen run in
another laboratory. Hence, the authors decided to use
the 249 oral drugs that had their pICsos determined at
a different AstraZeneca site as their independent test
set. Furthermore, this test set is a challenging test in
that it only covers the middle range of the training set
compounds in terms of the pICs¢s (Figure 2). However,
in the screening of a new chemical series the dynamic
range is likely to be unknown.
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If compounds in the test set are similar in properties
and or structurally to the training set compounds, then
the model is likely to predict these compounds reason-
ably well. We have assessed the Euclidean distance of
a compound i to a compound j belonging to the training
set?0 (eq 2),

(2)

where Dy; is the value of the dth descriptor of the jth
compound of the test set and Dy; is the value of the dth
descriptor of the ith compound in the training set. For
a compound x, there are as many distances as there are
compounds in the training set. This set of distances
forms a vector Dy train. For a compound, the distance to
its nearest neighbor in the training set is defined as the
minimum value of the vector D, tyain.

For the distance to the center of the training set, Dg;
is replaced by the mean of descriptor D, x4. The
normalized distance ND; to the center of the training
set or to the nearest neighbor in the training set is
expressed in eq 3,

ND, = /2D, ) ®)

where d is the number of descriptors of the model.

Similar measures have also been used previously;2
here the authors find that prediction error is related to
the similarity between a test set compound and the
training set compounds. The assumption is that as
compounds move further away from the property space
of the model then the error in prediction will increase.
To evaluate this, the 68 test set compounds which have
reported plCsp values were used, and in each case 2
types of distance to model calculations were performed
for each compound: (i) Euclidean distance to nearest
member of training set and (ii) Euclidean distance to
center of training set.20 The normalized distances ND;
were binned as >1 and <2, >2 and <3, >3 and <4, and
>4 (Figure 3), and the rmse (based on the consensus
prediction) was determined for each bin. We find that
the test set is dissimilar from the training set as there
are no compounds with a distance to model of less than
1. The error in prediction of the test set shows a
relationship to both the Euclidean distance to the center
of the training set and to the nearest neighbor in the
training set. This analysis suggests that distance to the
model space may be a critical factor in determining the
accuracy of the predictions of the 68 compounds from
the training set. The relationship between distance and
the precision of predictions based on the test set may
be used to give confidence in future predictions of
compounds at similar Euclidean distance to the training
set.

Although the models are based on continuous pICs
data, the model predictions have also been used in a
classification sense because so many compounds in the
test set were reported as out of range data. Neverthe-
less, the classification approach has its own limitations.
For instance, we have used a cutoff of pICsy = 5:
although this is perfectly justified in terms of progress-
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Figure 3. The rmse error against distance to model for (a) to
nearest neighbor and (b) to center of training set.

Table 3. A Confusion Matrix for the Oral Drug Test Set®

Measured
pIC50>5 pIC50 <5
pIC50>5 10 34
Predicted pIC50<5 8 197

@ Data generated based on the consensus model.

ing good compounds, by using an absolute cutoff we
have increased the likelihood of misclassifications. In
the classification of the 249 oral drugs test set, all
models give similar accuracy measures as calculated
from their confusion matrix. The observation that these
four CYP1A2 models show similar predictivity may
suggest that the modeled biological property could be
linear in nature. For conciseness we have presented
accuracy measures calculated from the consensus model
confusion matrix (Tables 3 and 4). The per class
measures of sensitivity and specificity do not address
the problems of the prevalence of the test set. However,
the positive and negative predictive values may be more
useful as they are less sensitive to prevalence. The
positive and negative predictive power of the model are
23% and 96%, respectively, and statistically better than
expected from chance based upon a knowledge of either
the training or test set prevalences. Furthermore, the
model is better than assigning the predictions to only
one class (i.e. pICs0 < 5). In Table 4, the probabilities
in parentheses represent the probability that the model
prediction is no better than the prevalences. The correct
classification rate (both classes) for the model (83%) is
better than chance based upon the training set preva-
lence (56%) but no better than chance based upon either
the test set prevalence (87%) or assigning to one class
(93%). However, the correct classification rate is a naive
measure of overall accuracy, as it does not take into
account that some or all of the apparent classification
accuracy could be due to chance. The « index, which does
take chance into account, calculated for our model is
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Table 4. Consensus Model Classification Statistics for the Oral Drug Test Set®

chance
model based on training based on test assign to one class

measure prediction set prevalence (40:60) set prevalence (7:93) only (pICsp < 5)
correct classification rate 83% 56% (<0.001) 87% (0.96) 93% (>0.99)
sensitivity 56% 40% (0.09) 7% (<0.001) 0% (<0.001)
specificity 85% 60% (<0.001) 93% (>0.99) 100% (>0.99)
false positive rate 15% 40% (<0.001) 7% (>0.99) 0% (>0.99)
false negative rate 44% 60% (0.09) 93% (<0.001) 100% (<0.001)
positive predictive power 23% 7% (0.001) 7% (<0.001) 7% (<0.001)
negative predictive power 96% 93% (<0.001) 93% (0.04) 93% (>0.99)
K 0.25 0.00 (0.04) 0.00 (0.01) 0.00 (0.05)

@ All data has been generated based on the confusion matrix. Probabilities are in parentheses.

Table 5. Interpretation of the « Statistic

K interpretation
<0 no agreement
0.0-0.19 poor agreement

0.20—0.39 fair agreement
0.40—0.59 moderate agreement
0.60—0.79 substantial agreement
0.80—1.00 almost perfect agreement

statistically different from zero, unlike our prediction
scenarios based upon training, test set, and assign to
one-class prevalences. In the chance scenarios « is zero,
implying no agreement between prediction and mea-
surement, and for the model a « of 0.25 means that we
have a fair agreement (Tables 4 and 5). These accuracy
measures are highly encouraging as the test set was
independent of the training set and measured in a
different AstraZeneca site. Ideally a test set with no
prevalence in either class would be a more definitive
test of the model; in reality, the prevalence is likely to
be unknown for the screening of a new chemical series.

To date the authors are not aware of any global
diverse CYP1A2 literature QSAR models. The literature
does contain series-based models (e.g. flavonoids),!? and
it would have been valuable to rebuild these models and
predict our oral drug test set: this would have been a
real measure of how our model compares with the
literature cases. Unfortunately, this was not possible
because we do not have access to descriptors that make
up the literature models.

3. Conclusions

We have used 4 statistical approaches in order to
understand CYP1A2 inhibition potential —although
these methods differ overall, nevertheless we have
obtained similar results (e.g. in terms of the descriptors
for each model and the performance of each model in
predicting an independent test set). The PLS and MLR
methods have been extremely useful in terms of under-
standing the influence and effect of a descriptor on
CYP1A2 inhibition. These in turn can be used to guide
chemistry and to move away from compounds that have
CYP1A2 inhibition. These models suggest that lipophi-
licity, aromaticity, charge, and HOMO/LUMO energies
are important features describing CYP1A2 inhibition.
In all cases the models are global and may be used to
predict a diverse range of compounds, which is a
potential limitation of other literature CYP1A2 models.
These models can be used as a rapid computational filter
for cytochrome P450 1A2 inhibition potential of com-
pound libraries.

4. Materials and Methods

4.1. Chemicals. All chemicals and reagents used were of
the highest available commercial grade. a-Naphthoflavone,
1-aminobenzotriazole, anthracene, beclomethasone, -carotene,
bupropion, busulfan, capsaicin, chloramphenicol, cholic acid,
cinoxacin, citral, curcumin, cyclosporine, d-limonene, dant-
rolene, dextromethorphan, diclofenac, digitoxin, digoxin, dil-
tiazam, dipyridamole, disopyramide, disulfiram, ellipticine,
enoxacin, epigallocatechin, erythromycin, fenfluramine, fla-
vone, flurbiprofen, furafylline, furazolidone, furosemide, glu-
cosamine, hydroxyurea, ibuprofen, kanamycin, ketoconazole,
labetalol, lidocaine, mepenzolate bromide, methimazole,
methocarbamol, methylene blue, mexiletine, morphine sulfate,
nadolol, niacin, nifedipine, norfloxacin, fluvoxamine, phen-
ethylisothiocyanate, propafenone, propofol, propranolol, pyrene,
pyridoxine, quinacrine, resveratrol, tamoxifen citrate, tannic
acid, tetracycline, tolbutamide, tryptamine, valproic acid,
verapamil, ethoxyresorufin, and f-nicotinamide adenine di-
nucleotide phosphate, reduced form (5-NADPH), were pur-
chased from Sigma Chemical Co. (Poole, U.K.). Galangin was
purchased from Aldrich Chemical Co. (Gillingham, U.K.).
Omeprazole, serotonin, cimetidine, and the in-house com-
pounds 1—15 (purity > 99%) were synthesized at AstraZeneca
Charnwood (Loughborough, U.K.). Escherichia coli coexpress-
ing P450 1A2 and human NADPH, P450 reductase were
purchased from Cypex (Dundee, U.K.). Previous studies have
demonstrated that supplementation with cytochrome b; is not
required for this system: kinetic parameters similar to both
other recombinant systems and human liver microsomes for
the CYP1A2 isoform have been reported.2324

4.2. Automated Ethoxyresorufin O-Deethylation In-
hibition Assay. Ethoxyresorufin O-deethylation was used as
the probe reaction for CYP1A2 and was based on an automated
assay previously described.?* Fourteen compounds, including
fluvoxamine (positive control) at six concentrations, were
screened per 96-well plate per run. Test compounds (e.g. 5 mM)
in DMSO were diluted in water by a robotic sample processor
(RSP), giving a range of concentrations (e.g. 250 to 1 uM) with
the DMSO constant at 5% (v/v). Stocks were diluted 1:10 into
the incubation to give an appropriate range of concentrations
for each test compound. Each incubation contained 60 uL of
NADPH (1.6 mM) and 100 uL of protein (0.1—0.5 mg/mL final
concentration) to give 15 pmol of enzyme/mL, and 20 uL of
test compound in 5% DMSO and 20 uL of ethoxyresorufin (6
uM) in 2% DMSO were added to start the reaction. Thus the
final concentration of DMSO in the incubation was 0.7%. An
incubation containing DMSO alone allowed calculation of
control activity. Production of resorufin (lex 544 nm, Aem 590
nm) was measured over 15 min (33 readings) on a fluorescence
plate reader (fmax; Molecular Devices Co. Sunnyvale, CA). All
measured data represent means from at least triplicate
determinations.

4.3. Data Analysis. Kinetic parameters were determined
by linear or nonlinear regression using Microsoft Excel (Red-
mond, WA), Microcal Origin 6.0 (OriginLab Corporation,
Northampton, MA), or WinNonLin 3.1 (Pharsight, Mountain
View, CA). ICsy values were determined by linear transforma-
tion within Microsoft Excel.
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4.4. Datasets. The training set consisted of 109 compounds;
87 of these were commercially available oral drugs, and 22
were in-house compounds (see Supporting Information).25-34
A mean plCsp value was measured for all of the in-house
compounds and 59 of the commercially available ones. The
average standard deviation of the measured pICs, data for
triplicate determinations is 0.2. The pICs, values for the
remaining 28 oral drugs were obtained from the literature.?-34
Many of these pICso values were estimated from the literature
K; value based upon the assumption that inhibition was
competitive (i.e. ICs5y = 2K;). If inhibition is noncompetitive,
then the IC5p will equal K; and therefore a 2-fold error would
arise as a result of assuming competitive inhibition. Conse-
quently, the QSAR models that have been built represent a
combination of literature as well as in-house data. For
compounds that showed no sign of inhibition at the top
concentration of 2 mM, a value of 5 mM was set as the ICs
(pICs0 = 2.3) and used for the purposes of model building.
While this is unusual in developing a quantitative model, it
ensures that the training set contains compounds that repre-
sent the drug-like space of marketed oral drugs. One hundred
twenty-three descriptors, which broadly describe topological,
geometrical, and electronic features of molecules, were calcu-
lated using an in-house descriptor generator engine. These
descriptors have been described in detail elsewhere.?%:3%36 In
this context the authors define global as a dataset comprising
compounds of a wide structural diversity and a good inhibitory
range; correspondingly, the models should be able to predict
across structural classes. The diversity in property space was
ensured using hierarchical clustering with a database of 594
marketed (in the USA) oral drugs created from an analysis of
the USA pharmacopoeia Physicians’ Desk Reference 1999.5738
In hierarchical cluster analysis the Euclidean distance (i.e. this
makes use of a straight-line distance as a measure of dis-
similarity) was used to calculate clusters from 6 principal
components that contain approximately 80% of the information
from the original 123 x-variables; the 6 principal components
were calculated via SIMCA-P (version 8; Umetrics).3940

4.5. QSAR Modeling. The pICsy inhibition data was
modeled using 4 statistical packages: PLS, MLR, CART, and
BNN. For each modeling method the same descriptor set of
123 descriptors was used. Where possible, automated variable
selection was used to extract variables that are likely to be
key for inhibiting CYP1A2. To test each model a large
independent test set was used. This test set contains 249 oral
drugs that were measured at a different AstraZeneca site than
the training set measurements. This cross-site validation
shows how a QSAR model might be used in a large pharma-
ceutical company. While a model may be built on a large
dataset produced in a single screen from a single laboratory,
or from a literature dataset, its success is often judged by its
success in prediction as measured in a similar screen run in
another laboratory.

4.5.1. Partial Least Squares. To obtain an optimal PLS
model for CYP1A2 inhibition, the program GOLPE* was
employed with PLS modeling to select key variables describing
CYP1A2 inhibition (pICs¢ data). The x-matrix prior to auto-
mated variable selection consisted of 123 descriptors. D-
optimal preselection was then used to remove 20% of variables
that have little significance in the PLS model (i.e. variables
which contain little or redundant information): this reduced
the x-matrix to 98 variables. Full factorial selection was then
used to filter down to key variables describing CYP1A2
inhibition: this filtering process involves assessing the con-
tribution of each variable to the predictivity of the PLS model.
SIMCA-P (Umetrics) was then used to rebuild the PLS model
using variables selected by GOLPE: 17 variables were selected
in total. Cross-validation procedures gave rise to g2 values,
and the appropriate number of principal components was
determined when the ¢? reached a maximum. Randomization
tests are a useful indication of model robustness. To test the
robustness of the PLS model a randomization test was
performed 999 times (within SIMCA-P) on the initial observed
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y-data. No randomized case was statistically better than the
initial model r? or g2, implying that our model is better than
random.

4.5.2. Multiple Linear Regression. The initial 123 de-
scriptor matrix is likely to contain similar descriptors, which
in MLR could cause cross-correlation problems (i.e. descriptors
encoding a similar molecular property). To elucidate this initial
problem and therefore make the MLR modeling more tractable
we used the 17 descriptors from GOLPE variable selection as
our initial starting point for MLR modeling. An MLR model
was obtained within JMP 4 (version 4.0.2).#2 A procedure of
alternating the forward addition and backward elimination
steps reduced the 17 GOLPE descriptors to 5.

4.5.3. Classification and Regression Trees. The program
CART was used to perform the regression tree analysis. The
CART methodology employs binary recursive partitioning, and
in this model a consensus of 15 regression trees was found to
be optimal when combined using bootstrapping aggregation
(Bagging). The Gini algorithm together with least absolute
deviation regression was used throughout this work. No
misclassification costs were used in this analysis, and priors
were set as equal.

4.5.4. Bayesian Neural Networks (BNN) and Auto-
matic Relevance Determination (ARD). BNN models are
less susceptible to overtraining and overfitting compared to
classical neural networks.*3 Several publications have used
BNN techniques for building QSAR models and have been
especially successful when applied to ADMET modeling.44~47
For example, Sorich et al. have shown the BNN approach to
produce superior models compared with linear techniques
when applied to the mapping of phase II metabolism.*”

A BNN model was produced using scripts in Perl language
written by P. Bruneau,? coupled with an automated routine
for variable selection written by R. Neal.*® Prior to feeding the
data into the BNN both the descriptor vectors and the
dependent variable were scaled to give a mean equal to 0 and
a standard deviation equal to 1. The protocol followed to give
a BNN model has been described by Bruneau.?’ This paper
should be consulted for a full discussion on training param-
eters. For 105 cases, the architecture of the initial BNN
consisted of 122 nodes in the input layer, 2 nodes in the hidden
layer, and 1 node in the output layer. Each node in the input
layer was connected to all the nodes in the hidden layer and
the output layer node. In addition a bias node linked to all
the hidden nodes is added to the input layer and a bias node
linked to the output node is added to the hidden layer. The
transfer function is a hyperbolic tangent. The BNN was used
together with automatic relevance determination (ARD)* to
select the most relevant descriptors to generate the most
parsimonious model. ARD starts by initially building the most
complete BNN model utilizing all the descriptors. The BNN
model was trained for 500 cycles. The ARD then adds to each
input unit a hyperparameter, which controls the magnitudes
of the weights of the connections of that input unit. As training
proceeds, the weights associated with irrelevant descriptors
are forced to small values, while the weights of important
variables are allowed to take high values. ARD parameter
takes a value, which hardens the process as it becomes smaller.
After the network is trained, the distribution of weights
associated with every descriptor is analyzed, and only the
descriptors with reasonably large weights are retained for the
next step. Descriptors with an associated sum of weights less
than 1% of the maximum sum of weights are discarded. The
process of training (500 cycles) and removal of descriptors is
looped until no further descriptors are removed in 5 successive
iterations; the ARD is then incremented to its next value. The
ARD parameters available were 5, 2, 1, 0.5, 0.2, 0.1, and 0.05.
The process continues until it is impossible to remove any more
descriptors without degrading the performance of the resulting
model. Table 6 summarizes the training and ARD parameters
together with the BNN r2, where p is the ratio of the number
of cases to the total number of connections in the network.
The final BNN model was obtained by training for 1000 cycles,
and the number of input nodes was equal to 6 as selected by
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Table 6. Summary of BNN and ARD Parameters

no. of no. of descriptors
no. of input hidden ARD left for
step cases nodes nodes p param r? next step
1 105 122 2 0.4 5 0.79 21
2 105 21 2 2.2 5 0.75 21
3 105 21 2 2.2 5 0.76 20
4 105 20 2 2.3 5 0.76 20
5 105 20 2 2.3 5 0.79 20
6 105 20 2 2.3 5 0.73 20
7 105 20 2 2.3 5 0.79 20
8 105 20 2 2.3 5 0.79 20
9 105 20 2 2.3 5 0.79 20
10 105 20 2 2.3 2 0.73 6
11 105 6 2 6.2 no 0.72 6
Actual

+ -

Predicted + a b

- c d

Figure 4. A confusion matrix. In this table, a, b, ¢, and d
represent true positive, false positive, false negative, and true
negative, respectively.

ARD. The final model contained 6 relevant descriptors, and
the last 200 cycles were used to give the final predictions in
the unscaled form. The last 200 cycles were used because this
gives a representative sampling of the BNN training process.*®
For most literature models, the stopping criteria for a BNN
involves training the net until the log of the evidence is a
maximum. For our implementation, the BNN is trained for a
set number of cycles to find the smallest number of descriptors
possible via ARD. Therefore, the protocol used by the authors
may not give an optimal BNN model. However, the current
strategy within AstraZeneca is to obtain models that have a
good balance between predictability and ease of interpretation
(as few descriptors as possible) for the medicinal chemists.
However, the maximum evidence method may give better
predictability compared to the approach used here by the
authors.

4.6. Evaluation of Model Predictivity. A number of
statistical measures may be used to evaluate the models. We
have used the square of the correlation coefficient to the y
(measured pICsp) = x (predicted pICso) line (r2) and the root-
mean-square error (rmse) as a measure of model performance.
However, the r? obtained for the training set may not be
reflective of the model performance on an independent test
set.

A more realistic measure of model performance is based on
how a model performs on compounds that it has not been
trained on: the so-called test set compounds. The majority of
the compounds in the test set of 249 oral drugs were reported
as out of range data (no apparent inhibition at 2 mM); this
affected 181 compounds. For the 68 compounds which have a
pICso value, we have used the rmse and the square of the
correlation coefficient in both the y = x line (%) and the line of
best-fit (r%,) as a way of assessing the performance of each
model.

Although the model is based on continuous pICs, data, the
model predictions have also been used in a classification sense
because so many compounds in the test set were reported as
out of range data. For classification, the 2 classes used are
pICs0 < 5 and pICsp > 5. We have used a pICsp = 5 as a
pragmatic cutoff for CYP1A2 inhibition. Compounds reported
with pICso > 5 have potential to be problematic. Classification
performance in a 2-class case is normally summarized in a
confusion or error matrix that cross tabulates the observed
and predicted patterns (Figure 4). In this paper we define (+)
and (—) as pICsp > 5 and pICs¢ < 5, respectively. The total
number of observations (N) in the test set is equal toa + b +
¢ +d. For a review of methods for the assessment of prediction
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Table 7. Accuracy Measures That Can Be Calculated from a
Confusion Matrix

measure calculation
prevalence (a +¢)J/N
correct classification (a + d)/N
rate
sensitivity alla +c¢)
specificity dl(b +d)
false positive rate  b/(b + d)
false negative rate  c/(a + ¢)
positive predictive  af(a + b)
power
negative predictive d/(c + d)
power
K {(a +d) — [((a +c)a + b) + (b + d)c + d)/NI}/

{N - [((@ +c)a + b) + (b + d)c + d)/NI}

errors in classification, see Fielding and Bell.’° A variety of
error or accuracy measures can be calculated from a confusion
matrix (Table 7). There are several measures that describe
the accuracy of a single class (per class accuracy). The false
positive rate is the proportion of negative cases that were
incorrectly classified as positive, whereas the false negative
rate is the proportion of positive cases that were incorrectly
classified as negative. Sensitivity is the proportion of positive
cases that were correctly predicted, and specificity is the
proportion of negative cases that were correctly predicted. The
positive and negative predictive power are the proportion of
positive and negative predictions that were observed positive
and negative, respectively. A naive measure of overall accuracy
(all classes) is the correct classification rate. The problem with
this measure is that it does not account for the fact that some
of the apparent classification accuracy could be due to chance.
For example, if a test set is 90% prevalent in one class, then
it is possible to achieve an 82% correct classification rate by
chance. The « index of overall agreement for classification was
developed by Cohen®%2 and associates®® in the context of
psychology and psychiatric diagnosis. The « index (eq 4) is
considered to be superior to using correct classification rate
as it assesses the model’s improvement in prediction over
chance. Landis and Koch®* have suggested ranges of agreement

= observed agreement — chance agreement @)

total observed — chance agreement

for the « statistic (see Table 5). The « index of agreement has
very recently been highlighted in the field of QSAR to assess
the overall accuracy of a model’s predictive power.?>¢ How-
ever, as far as the authors are aware, this is the first
comprehensive use of the « index in the field of QSAR.

Supporting Information Available: Training set data.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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